Development of Diagnostics for Deuterium-Tritium Experiments Fusion *cuparticles* in

V.G. Kiptily and JET EFDA contributors

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

Contents

- 1. Introduction
- 1.1 Why should the fusion alphas be studied?
- 1.2 What do we want to measure?
- 2. Nuclear reactions
- 2.1 Fusion and diagnostic
 - 2.2 Cross-sections
- 2.3 Fusion source spectrum
- 2.4 Distribution function of fusion products
- 3. Fusion α -particle source diagnostics
- 3.1 Neutron and γ -ray emission profiles
- 3.2 Neutron spectrometry
- Confined α-particle diagnostics
 - 4.1 Neutral Particle Analysers
- 4.2 Gamma-ray diagnostics
- 5. Escaped α-particle diagnostics
 - 5.1 Scintillator Probe
- 5.2 α -particle collectors
- 6. Summary

	Introduction
1.1. V	Vhy should the fusion alphas be studied?
*	Reactor plasma is self-heated by fusion $lpha$ -particles
*	Up to now , fusion research was in sub-critical zone, without burn or with small burn (Q ^{max=} 0.61, JET in 1997)
	"Fusion gain" factor Q gives the ratio of <i>fusion power</i> to the external power (NBI, ICRH, …) needed to sustain the energetic equilibrium
*	Fast ions/alphas may drive MagnetoHydroDynamic instabilities and can in turn be re-distributed and, in some cases, lost
*	Loss of bulk plasma heating is unacceptable for an efficient power plant
	May lead to ignition problems
	Damage to first wall
	Can only tolerate fast ion losses of a few % in a reactor

1.1. Why should the fusion alphas be studied?

Burning plasma - fundamentally new physics. New phenomena have to be studied: **10>Q>5** : α -particle effects on MHD stability and turbulence

Q>10 : strong non-linear coupling between α 's and pressure driven

current, turbulent transport, MHD stability;

 $\mathbf{Q} \rightarrow \infty$: ignition transient phenomena

1.2. What do we want to measure?

Fusion reaction rate:

Neutron and y-ray diagnostics

Spatial α -particle distribution / redistribution effects:

Neutron and y-ray diagnostics

 α -particle energy distributions:

 γ -ray and neutron spectrometry, neutral particle analyser

 α -particle slowing down & confinement effects:

γ-ray diagnostics

α-particle losses:

Scintillator Probe, Faraday Cups, activation

1.2. What do we want to measure?

ITER requirements

- Fusion α -particle source : $10^{12} 4x10^{18}$ n m⁻³ s⁻¹ for r/a < 0.75 Accuracy: 10% Spatial : a/30 Time: 0.1 – 1 ms A
- Accuracy: 20% Confined α -particles: 0.1 – 2x10¹⁸ m⁻³ Spatial : a/10 Time: 100 ms A
- Accuracy: 10% Spatial : a/10 Time: 0.1 – 0.5 ms Lost α -particles: 2 - 20 MWm⁻² A

Introduction

JET is the tokamak closest to the ITER parameters with unique capabilities of tritium operation

	JET	ITER
R, B	3.1	6.2
a, n	1.0	2.0
I _P , MA	up to 5	up to 15
B _T , T	up to 4	up to 5.3

ITER-like wall: CFC tiles are replaced by Be

Introduction

f.

Introduction

JET plasma heating

84.T.14560

	OR
	ar co
	- 22
	20
	ш <u>г</u>
	Ψщ
	2
	≪ ©
	1
	- 9
	and and the
	6 2 III
6113	
623	1
Anis	1
100	

Fusion power progress (in D-T plasma)

- 1991 JET 1.7MW (10% T; 10MW heating)
- 1995 TFTR 10MW (50% T; 40MW heating)
- 1997 JET 16MW (50% T; 22MW heating)
- 2015? JET up to 20MW (50% T; 35MW? heating) *

Main goals:

- Fuel retention, material erosion, migration and dust (containing T).
- Assessment of the influence of isotope mass

on edge pedestal characteristics, ELMs and their mitigation. on "hybrid" and "steady state (ITB)" scenarios. on access to H-mode and high confinement.

Study of alpha particle behaviour.

Y Gamma Ray	e ⁻ + e ⁺ Then det D + H - D + H - And the F 3He + ³ He + ³ There are There are	H to He, which occurs at a T > 3 10 ⁶ K. tep $\rightarrow D + e^+ + v_e + 0.42 \text{ MeV}$ $\rightarrow D + e^+ + v_e + 0.42 \text{ MeV}$ fron immediately annihilates $\rightarrow 2\gamma + 1.02 \text{ MeV}$ $\rightarrow 2\gamma + 1.02 \text{ MeV}$ $\rightarrow 3\text{He} + \gamma + 5.49 \text{ MeV}$ ath to generate ⁴ He $\rightarrow ^4\text{He} + 2\text{H} + 12.86 \text{ MeV}$ = 2 other pp-chains. Some other pp-chains in the Sun (p=0.86) test a net energy of 26.7 MeV.
V Neutrino	Y Gamma Ray V Neutrino	5

2.1. Fusion reactions in Lab

In lab-made fusion we use reactions with larger cross-sections:

- $D + D \rightarrow T$ (1.01 MeV) + p (3.02 MeV)
- → ³He (0.82 MeV) + n (2.45 MeV)
- D + 3 He \rightarrow 4 He (3.6 MeV) + p (14.7 MeV)
- D + T \rightarrow ⁴He (3.5 MeV) + n (14.1 MeV)
- $T + T \rightarrow {}^{4}He + 2n + 11.3 \text{ MeV}$

For U.S.

2.1. Fusion reactions: tritium production

Naturally occurring T is extremely rare, trace amounts are formed with cosmic rays in T does not accumulate - relatively short half-life ($T_{1/2} \approx 12.32$ y) atmosphere (neutron energy > 4 MeV is needed): $T \rightarrow {}^{3}He + e^{-} + v_{e} + 18.6 \text{ keV}$ $^{14}N + n \rightarrow ^{12}C + T$

```
Tritium is produced in nuclear reactors
6Li + n \rightarrow <sup>4</sup>He (2.05 MeV) + T (2.75 MeV)
```

High-energy neutrons can also produce T (not attractive method) ⁷Li + n \rightarrow ⁴He + T + n + 2.466 MeV ¹⁰B + n \rightarrow 2⁴He +

Note:

1 GW fusion reactor – 125 kg of tritium per year.

U.S. DoE: only 225 kg of tritium has been produced in USA in the period 1955 - 1996.

I)	CCFE ULITAM CENTRES	PA	uclear rea	ctions	
3	1. Diagnostic	c reactions			
	The goal is to stu	Apr			
		 Fusion reaction p ICRF-driven ions: 	roducts: <i>n, p, t, ³He</i> an H, D, T, ³ He and ⁴ He	id α (in JET)	
	Neutron diagno	ostics: 2.5-MeV neutrons	s from DD-reaction and	14-MeV from DT	
	Gamma diagno	ostics: fast ions			
		<mark>γ -ray</mark> emission is pro with the main JET (a	oduced due to nuclear r ind ITER) impurities, <mark>B</mark> €	reactions with fuel and e and C	
	protons	deuterons	tritons	³ He	
	$D(p,\gamma)^{3}He$	⁹ Be(d,pγ) ¹⁰ Be	$T(d,\gamma)^5He$	$D({}^{3}He,\gamma){}^{5}Li$	
	$T(p,\gamma)^4He$	⁹ Be(d,nγ) ¹⁰ B	⁹ Be(t,n _Y) ¹¹ B	9 Be(3 He,p γ) 11 B	
	⁹ Be(p,γ) ¹⁰ B	¹² C(d,p ₇) ¹³ C	$^{12}C(t,\gamma)^{15}N$	9 Be(3 He,n γ) 11 C	
	⁹ Be(p,p'γ) ⁹ Be		$^{12}C(t,n\gamma)^{14}N$	9 Be(3 He,d γ) 10 B	
	⁹ Be(p,α γ) ⁶ Li		$^{12}C(t, \alpha\gamma)^{11}B$	$^{12}C(^{3}He, p\gamma)^{14}N$	
	¹² C(p,p' ₇) ¹² C				
	α-particle di	iagnosis in JET is bas	ted on the ⁹ Be(α ,n γ) ¹	² C reaction	
14	5th ITER Internat	tional Summer School, Aix en Pr	ovence, France, 20-24 June 20	011	

	CEE Nuclear reactions
2.2	Cross-sections: theoretical background
	The strong energy dependence of fusion cross-sections – repulsive Coulomb potential:
	Reactions are possible only because of tunnelling effect:
	$\sigma \propto \exp(-rac{2\pi Z_1 Z_2 e^2}{\hbar V_{rel}})$ – tunnelling probability; V_{rel} – relative velocity of the particles
	Quantum mechanics shows that fusion reaction probability is also proportional to a
	geometrical factor:
	$\pi {\cal X}^2 \propto {1\over E}$ where ${\cal A}-$ the de Broglie wavelength
	Strong energy dependence \rightarrow introduction of the astrophysical S-function:
	$\sigma = \mathrm{S(E)} \frac{1}{E} \exp(-\frac{B_G}{\sqrt{E}})$
	where $B_G = \pi \alpha Z_1 Z_2 \sqrt{2 \mu c^2}$ is the Gamov constant; $\mu = \frac{M_1 M_2}{M_1 + M_2}$ - reduced mass;
	$\alpha = e^2 / \hbar c \approx 1/137$ - fine structure constant; E in keV (CM frame)
15	5th ITER International Summer School, Aix en Provence, France, 20-24 June 2011

Nuclear reactions	Cross-sections: parameterisation	-function represents slowly varying nuclear part of the fusion reaction probability	-function is important for fitting cross-section to experimental data:	$\sigma = \frac{S(E)}{E \exp(B_G / \sqrt{E})}$	S-function is calculated with R-matrix cross-section analysis and fitted with a Pa	polynomial:	$S(E) = \frac{A1 + E(A2 + E(A3 + E(A4 + EA5)))}{1 + E(B1 + E(B2 + E(B3 + EB4)))}$	R-matrix theory is a mathematical description and a parameterisation of nuclear	reactions: a many-body nuclear system with a short range strong forces is treate	as a system with only 2-body degrees of freedom outside the 'channel radii'. Wigner, Eisenbud Phys.Rev. 72(1947)29 and Lane, Thomas Rev.Mod.Phys.30(1958	5th ITER International Summer School, Aix en Provence, France, 20-24 June 2011
	2.2.										16

2.2. Cross-sections: parameterisation (2)

List of parameters for fusion cross-sections

Coefficient	$T(d, n)^4He$	$^{3}\mathrm{He}(\mathrm{d},\mathrm{p})^{4}\mathrm{He}$	D(d, p)T	$D(d,n)^{3}He$
B _G (√keV)	34.3827	68.7508	31.3970	31.3970
AI A2 A3 A4 B1 B3 B3 B4	6.927×10^{4} 7.454×10^{8} 2.050×10^{6} 5.2002×10^{4} 0.0 6.38×10^{1} -9.95×10^{-1} 6.981×10^{-5} 1.728×10^{-4}	$\begin{array}{c} 5.7501 \times 10^{6} \\ 2.5226 \times 10^{3} \\ 4.5566 \times 10^{1} \\ 0.0 \\ 0.0 \\ -3.1995 \times 10^{-3} \\ -8.5530 \times 10^{-6} \\ 5.9014 \times 10^{-8} \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} 5.5576 \times 10^{4} \\ 2.1054 \times 10^{2} \\ -3.2638 \times 10^{-2} \\ 1.4987 \times 10^{-6} \\ 1.8181 \times 10^{-10} \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	5.3701×10^{4} 3.3027×10^{2} -1.2706×10^{-1} 2.9327×10^{-5} -2.5151×10^{-9} 0.0 0.0 0.0 0.0
Energy range (keV)	0.5-550	0.3-900	0.5-5000	0.5-4900
(∆S) _{max} (%)	1.9	2.2	2.0	2.5

C UNIT OF COMPANY

Bosch, Hale Nuclear Fusion 32(1992)611

E in keV; cross sections in mb $\equiv 10^{-27}$ cm²

2.2. Cross-sections

Peres Nucl. Mater. 50(1979) 5569

$$\langle \sigma v \rangle = C 1 \theta \sqrt{\xi} / (\mu c^2 T^3) e^{-3\xi}$$

$$\theta = T / \left[1 - \frac{T(C2 + T(C4 + TC6))}{1 + T(C3 + T(C5 + TC7))} \right]$$

$$\xi = (B_G^2 / (4\theta))^{1/3}$$

$$\langle \sigma v \rangle = C 1 \theta \sqrt{\xi} / (\mu c^2 T^3) e^{-3\xi}$$
$$\theta = T / \left[1 - \frac{T(C2 + T(C4 + TC6))}{1 + T(C3 + T(C5 + TC7))} e^{-3\xi} \right]$$

Useful parameterisation for the fusion reactivites:

Nuclear reactions

2.2. Cross-sections: fusion reactivity parameterisation

In plasma, ions have a velocity distribution, $f(\vec{V})$

and fusion rate is proportional to fusion reactivity :
$$R = \frac{n_i n_j}{1 + \delta_{ij}} \langle \sigma v \rangle$$
$$n_i, n_j \quad -\text{ ion densities; fusion reactivity - \langle \sigma v \rangle = \iint f(\vec{V}_1) f(\vec{V}_2) \sigma(\left| \vec{V}_1 - \vec{V}_2 \right|) \left| \vec{V}_1 - \vec{V}_2 \right| d\vec{V}_1 d\vec{V}_2$$

2.2. Cross-sections: fusion reactivity parameterisation (2)

List of parameters for fusion reactivities in Maxwellian plasmas

Coefficient	T(d, n) ⁴ He	³ He(d, p) ⁴ He	D(d, p)T	D(d, n) ³ He
B _G (√keV)	34.3827	68.7508	31.3970	31.3970
m _r c ² (keV)	1 124 656	1 124 <i>5</i> 72	937 814	937 814
388586	$\begin{array}{c} 1.17302 \times 10^{-9} \\ 1.51361 \times 10^{-2} \\ 7.51886 \times 10^{-2} \\ 4.60643 \times 10^{-3} \\ 1.35000 \times 10^{-3} \\ -1.06750 \times 10^{-4} \\ 1.36600 \times 10^{-5} \end{array}$	$\begin{array}{c} 5.51036 \times 10^{-10} \\ 6.41918 \times 10^{-3} \\ -2.02896 \times 10^{-3} \\ -1.91080 \times 10^{-5} \\ 1.35776 \times 10^{-4} \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{c} \textbf{5.65718} \times 10^{-12} \\ \textbf{3.41267} \times 10^{-3} \\ \textbf{1.99167} \times 10^{-3} \\ \textbf{1.99167} \times 10^{-3} \\ \textbf{0.0} \\ \textbf{1.05060} \times 10^{-5} \\ \textbf{0.0} \\ \textbf{0.0} \\ \textbf{0.0} \end{array}$	5.43360×10^{-12} 5.85778×10^{-3} 7.68222×10^{-3} 0.0 -2.96400×10^{-6} 0.0 0.0 0.0
T _i range (keV)	0.2-100	0.5-190	0.2-100	0.2-100
(Δ <σv)) _{max} (%)	0.25	2.5		0.3

T is in keV; reactivity is in cm²s⁻¹

Bosch, Hale Nuclear Fusion 32(1992)611

2.2. Cross-sections: fusion reactivity

	FOR B A S
	N E N
\mathbf{C}	∑ ZZ ≼n
Ŏ	N ISN
ATTA	С

2.3. Fusion source spectrum

In the Lab system the velocity of nuclear reaction products is $\vec{v}_i = \vec{u}_i + \vec{V}_{CM}$

where
$$\vec{V}_{CM} = \frac{\vec{V}_1 M_1 + \vec{V}_2 M_2}{M_1 + M_2}$$
 is the velocity of CM.

The kinetic energy of the products is

$$E_{i} = \frac{1}{2}m_{i}V_{CM}^{2} + \frac{m_{j}}{m_{i} + m_{j}}(Q + K) + V_{CM}\cos\theta \left[\frac{2m_{i}m_{j}}{m_{i} + m_{j}}(Q + K)\right]^{2}$$

where $Q = M_1 + M_2 - m_i - m_j$ is the nuclear energy release of the reaction;

$$K = \frac{1}{2} \mu V_{rel}^2$$
 is the relative kinetic energy with $\vec{V}_{rel} = \vec{V}_1 - \vec{V}_2$ and

 $ec{V}_{rel}$ and $ec{V}_{CM}$. $\cos \theta$ is the cosine of the angle between

Source spectrum:
$$S(E_i) \propto \iiint f_1(\vec{V}_1) f_2(\vec{V}_2) \sigma (\left| \vec{V}_1 - \vec{V}_2 \right|) \left| \vec{V}_1 - \vec{V}_2 \right| \delta(E - E_i) d\vec{V}_1 d\vec{V}_2 d\Omega$$

FOR	
01.00	
⊢ a:	
2	
2	
l Se	
0	
e_{2} (A A	
A his	
241	

2.4. Distribution function of fusion products

Neutrons have an ultra weak interaction with plasmas (but interact with tokamak construction materials). Hence, spectrum of the neutron source for Maxwellian plasmas with temperature T could be expressed as

$$\frac{dN}{dE} \propto \exp\left(-\frac{M(E - \langle E_{n0} \rangle)^2}{4m_n T \langle E_{n0} \rangle}\right)$$

where

 $M = M_1 + M_2$

$$\left\langle E_{n0} \right
angle = rac{1}{2} m_n \left\langle {V_{_{CM}}}^2
ight
angle + rac{M-m_n}{M} \left(\mathcal{Q} + \left\langle K
ight
angle)$$

Therefore, temperature of the plasma could be obtained from the width (FWHM) of L the spectra

$$\sigma_{DDn}=82.3\sqrt{T}$$
 keV $\sigma_{DTn}=176.7\sqrt{T}$ keV

6

Where $m{C}$ represent effects of Coulomb scattering and $m{S}$ represents source and ſ losses of fast particles.

¢

f we assume that
$$\alpha$$
-particles are confined, $f(E) = S(E_{\alpha_0})\sqrt{\frac{E_{\alpha_0}}{E}} \frac{\sqrt{E_{\alpha_0}}^3 + \sqrt{E_{cr}^3}}{\sqrt{E^3} + \sqrt{E_{cr}^3}}$

where
$$E_{cr} = 14.8A_{\alpha}T_e \left\langle \frac{\sum_i n_i (Z_i^2/A_i) \ln \Lambda_i}{n_e \ln \Lambda_e} \right\rangle^{\frac{2}{3}}$$
 is critical energy (for $E > E_{cr}$,

the electron drag is dominates over the bulk ion drag); A_e is the Coulomb logarithm.

The slowing-down time on electrons:
$$\tau_{se} = 2 \times 10^{10} \frac{A_{\alpha} T_e^{3/2}}{Z_{\alpha}^2 h_e \ln \Lambda_e}$$

The fast ion thermalization time: $\tau_{th} = \frac{\tau_{se}}{3} \ln \left[1 + \left(\frac{E}{E_{cr}} \right)^{3/2} \right]$

The fast ion thermalization time:
$$\tau_{th} = \frac{\tau_{se}}{3} \ln \left[1 + \left(\frac{1}{3} + \frac{1}{3} \right) \right]$$

2.4. Distribution function of fusion products (3)

The energy that going from ions with energy E into plasma ions is given by Stix formula

$$\vec{J}_i(E/E_{cr}) = \frac{E_{cr}}{E} \int_0^{E/E_{cr}} \frac{d(E/E_{cr})}{1+(E/E_{cr})^{3/2}}$$

For fusion alpha-particles in DT plasmas at T_e =10 keV $E_{cr} \approx$ 370 keV \sim 20% of alpha energy transfer to bulk ions

26

Fusion alpha source diagnostics

3.1. Neutron emission profile

Two cameras

Vertical: 9 lines-of-sight Horizontal: 10 lines-of-sight Fan-shaped array of remotely adjustable collimators with two apertures (Ø10 & 21 mm) Space resolution: ~8 (or ~15)cm (in the centre)

Detectors:

- NE213 liquid scintillators (2.5 & 14 MeV)
- Bicron-418 plastic scintillators (14 MeV) -Csl(Tl) photo-diodes (hard X-rays and γ -rays) Neutron detectors are absolutely calibrated

3.1. Neutron emission profile

Tomographic reconstruction of 14-MeV neutron measurements

Fusion alpha source diagnostics

3.1. Neutron emission profile

Simulated and measured 14-MeV neutrons

9))) ()))	CEE FUSION al	ha source diagnostics
ີ່ຕໍ	l. Fusion γ -ray emissior	n profile
	Fusion α -particle source can be m of the main fusion reactions D+T	easured with radiation capture reaction – branch = α + n and D+ ³ He = α + p :
	D + T \rightarrow ⁵ He + γ (Q=16.63 MeV)	and
	D + $^{3}\text{He} \rightarrow ^{5}\text{Li}$ + γ (Q=16.38 MeV)	
	The branching ratio is small: סו	$\frac{\sigma(\gamma)}{(\alpha+n)} \approx \frac{\sigma(\gamma)}{\sigma(\alpha+p)} \approx 5 \times 10^{-5}$
	Nevertheless, the γ -ray profile me	asurements are feasible for the ITER-like reactors.
	10 ³ = #72631, D-NBI	
		The gamma-ray spectrum recorded in the JET discharge with ³ He-minority heating of
	Δ /dE	the D-plasma.
		2 broad peaks are related to the different final states in ⁵ Li nucleus.
	$10^{\circ} \frac{1}{2} + \frac{1}{2} + \frac{1}{6} + \frac{1}{8} + \frac{1}{10} + \frac{1}{12} + \frac{1}{16} + \frac{1}{18} + \frac{1}{20} + \frac{1}{2$	Also, p + T \rightarrow ⁴ He + γ (Q=19.81 MeV), branch~0.05!
30	5th ITER International Summer School, A	ix en Provence, France, 20-24 June 2011

3.2. Neutron spectrometry

Magnetic Proton Recoil Ugraded spectrometer for DD- or DT-neutrons

Goal: measurements of plasma temperature (steady state) and energy distribution of the fuel ions (heating); n_D/n_T ratio.

Side view

5th ITER International Summer School, Aix en Provence, France, 20-24 June 2011

Confined *a*-particle diagnostics

4.1. Neutral Particle Analysers

The NPA measures the line integrated energy distribution function and fluxes.

Neutrals are generated via CX processes with bulk and impurity ions.

Carbon foils (300 Å) re-ionize the neutrals.

Acceleration provide boost to increase detection efficiency of low energy neutrals and to increase signal to noise ratio.

Momentum separation via B field Mass separation via E field. CsI(TI) scintillator detectors coupled to PMT provide the signals for each individual neutral detected. Si-detectors are installed to separate D and $\boldsymbol{\alpha}'s$

4.1. Neutral Particle Analysers: vertical view

High-energy NPA measures the energy distribution function of neutral H, D, T, 3 He and 4 He in the energy range 0.3 – 4 MeV.

Confined *a*-particle diagnostics CCPE EULHAM GENTREZ

4.1. Neutral Particle Analysers: horizontal view

Low-energy NPA measures simultaneously the energy distribution function of neutral H, D and T in the energy range 5 – 740 keV.

neasurements	Auxiliary heating and neutral D-fluxes in LE-NPA	Deuterium - KR2 Setup 5 - Pulse 70034	$\begin{bmatrix} 10^{15} & & & & & & & & & & & & & & & & & & &$	
4.1. Neutral Particle Analysers: n	Effect of ICRH power in HE-NPA ICRH with 42 MHz @ 3, 4 and 6 MW (R _{res} = 2.9 m)	10 ¹¹ KF1 time integrated 58 - 62 s	$(1 - 1)^{U_{1}} (1 - 1)^{U_{$	

«-particle diagnostics	ers: measurements	Is in DD-plasmas with HE-NPA	The charge-exchange energy spectrum T ⁰ atoms for the time 13s-14s	dT _T o/dE, (cm ² s keV st) ⁻¹	0.2 0.4 0.6 0.8 1.0 1.2 E _T o, (MeV)	en Provence, France, 20-24 June 2011
CCFE Confined o	4.1. Neutral Particle Analys	Measurements of tritor	The time evolution of T ⁰ fluxes and T-source during NBI heating	10014 s-1) Contraction Countries	12 13 14 15 16 17 Time (s)	37 5th ITER International Summer School, Aix

Confined *a*-barticle diagnostics CCPE BULLAM CENTRES BULLAM ENERGES

4.2. Gamma-ray diagnostics

${}^9\text{Be}(\alpha,n\gamma){}^{12}\text{C}$ reaction

⁹Be+ $\alpha \rightarrow {}^{13}C^* \xrightarrow{n} {}^{12}C^* \xrightarrow{\gamma} {}^{12}C$

The nuclear reaction between fast α and ^{9}Be impurity leads to:

- Excitation of high-energy levels in ¹³C* nucleus
- De-excitation by emitting neutrons with population of the low-lying levels in ¹²C*
- ▶ Further de-excitation by γ 3.21 MeV and γ 4.44 MeV to the ground state of ¹²C nucleus:
- γ 4.44 MeV (E_{level} =4.44 MeV) are produced by α 's with $E_{\alpha} > 1.7$ MeV
 - $\gamma 3.21$ MeV (E_{level} =7.65 MeV) are produced by α 's with E_{α} > 4 MeV

e diagnostics	etry	terial	e-e+ - pair production	Nucleus Electron (e ⁻)	$E_{\gamma} - 2m_0 c^2 = E_{e^-} + E_{e^+}$ $E_{\gamma}^{ m min} > 2m_0 c^2 = 1022 \; keV$	memory \rightarrow analysis	-24 June 2011
ined <i>α</i> -particle	agnostics: spectrom	s interact with detector ma	Compton scattering	۶. ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	$E_{\gamma}^{'} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_0 c^2} (1 - \cos \theta)}$	data acquisition system →	ummer School, Aix en Provence, France, 20
CCFE GUSTAM ENERGE FUSTAM ENERGE	4.2. Gamma-ray di	γ-ray	Photo-electric absorption		$egin{array}{ll} E_e = E_{\gamma} - E_b \ \sigma \propto rac{Z^{4 \div 5}}{E_{\gamma}^3} \end{array}$	γ -detector \rightarrow	9 5th ITER International S

: JET spectrometers	Nal(TI): energy resolution, ∆E/E ≈ 8% Decay times - < 250 ns	Digital Data Acquisition system allows up to 1 MHz Pulse Height Analysis	LaBr ₃ (or BrilLanCe): $\Delta E/E \approx 3\%$,	DAQ up to 5 MHz PHA	HPGe : $\Delta E/E \approx 0.3\%$ - the Doppler broadening of γ -lines can be measured! DAQ up to 0.5 MHz PHA		n Provence France 20-24. June 2011
4.2. Gamma-ray diagnostics	BGO, Nal(TI), LaBr ₃ , HPGe	1.0 -	-6.D	BGO 0.0- -1.0 (m) Z	-1.0	2.0 2.5 3.0 3.5 R(m)	40 5th ITER International Summer School Aix er

|--|

diagnostics	 ³He-minority ions was accelerated by ICRF in the DD- plasma 	The Doppler broadening due to nuclear reactions between ³ He and C & Be impurities has been ³ He and C & Be impurities has been measured for <t <sub="">3He. $E_{\gamma} \approx E_{\gamma 0} + E_{\gamma 0}(V_R/c) \cos \theta$</t>	24 June 2011
CCFE Confined co-particle	γ -ray spectrum recorded with HpGe-detector	$\frac{10^{5}}{10^{2}}$	5th ITER International Summer School, Aix en Provence, France, 20-2
	T		43

5th ITER International Summer School, Aix en Provence, France, 20-24 June 2011

Tomographic reconstructions of profiles measured in different q-profile phases of the optimised shear plasma discharge. The monotonic q-profile was settled down after sawtooth crash.

4.2. Gamma-ray diagnostics: ⁴He acceleration experiments

Confined *c*-particle diagnostics

5th ITER International Summer School, Aix en Provence, France, 20-24 June 2011

|--|

4.2. Gamma-ray diagnostics: modelling for ITER

SELFO modelled profiles of γ -ray emissivity due to ⁹Be(³He, $p\gamma$)¹¹B

 $n_{He-3} / (n_D + n_T) = 1\%, f_{ICRF} = 52MHz$

strong to be measured

Final Report on the EFDA task TW6-TPDS-DIADEV, 2007

modelling for ITER	1-D Fokker-Planck modelling of 2.87-MeV γ -ray emissivity of ⁹ Be(D,n γ) ¹⁰ B	Relaxation of 2.87 MeV γ -ray emission from nuclear reactions after NBI switch-off.	Poor confinement associated with τ_{loss} <0.1 τ_{s} will significantly enhance the decay rates of γ -ray emission.	γ-ray measurements with ~ 50ms time resolution are required for slowing-down and D- beam loss-rate assessments		$\exp\left(-rac{ au}{ au_l} ight)_{E=E_0}$, $E_0=1$ MeV and $E_c\sim 20 Te$	ovence, France, 20-24 June 2011
amma-ray diagnostics: r	2.87 MeV, ⁹ Be(d,nγ) ¹⁰ B: 1D model	Ec=100keV, no loss	Ec=500keV, no loss Ec=500keV, TI=0.1Ts		u u.1 u.2 u.3 u.4 t/tsp	$R_{\gamma}\left(t>0 ight)\propto\sqrt{E}\int\limits_{t}^{ au_{\gamma}}d au\sigma_{\gamma}\left(E' ight)\sqrt{E'}\mathrm{ex}$ al IAEA FEC, TH/P3-2, Geneva 2008	5th ITER International Summer School, Aix en Pro
GULITAM CA	(t)/尺/(t=0) (1)/尺/(t=0)	rate, Rγ O ض	noissimə sn O O	nmsg bəsilem O	Nor	V. Yavorskij at	52

fined α -particle diagnostics	liagnostics: γ - camera for ITER (project)	Radial camera for neutrons and gammas:	Radial Camera 12 ex-vessel views (36 channels) 8 in-vessel views (port)	Vertical camera – in divertor (project)	γ-ray collimators should be equipped with neutron attenuators	⁶ LiH is proposed: high-efficient neutron attenuator, γ-ray transparent	10 ⁻¹⁰ (DD-neutrons) and	10 ⁻⁵ (DT-neutrons) ■ Attenuation range 10 ⁻¹ ÷10 ⁻⁶ is required		
CCFE CONFIL FUSTION EVERGES FUSTION EVERGES	4.2. Gamma-ray diag		Radi						Vertical Camera	Running 1 1 2500 1 1 1 5000

CCE Contined & particle diagnostics	Test of ⁶ LiH neutron attenuator on JET	²⁰⁰ - ⁰⁰¹ ²⁰⁰ - ⁰⁰¹ - ⁰⁰¹ ²⁰⁰ - ⁰⁰¹ ²⁰⁰ - ⁰⁰¹ - ⁰⁰¹ ²⁰⁰ - ⁰⁰¹	C C C C C C C C C C C C C C	by a factor of ≈ 100 Counts p Gamma-rays with E _y > 3 MeV suppressed with 6 iH attenuator by a factor of ≈ 2	0 2000 4000 6000 8000 10000 E _y Energy, keV Chugunov et al., Instrum. and Exp Techniques 51 (2008) 166
	500-	lənnafa per Channel § 8 8 6 5 8	er Channel C	d struo	Chugunov

5.1. Scintillator probe: in JET

S
(1)
8
FOR
L.

5.1. Scintillator probe: basic principle

m ~~~~	
:	Gyro-radius

Pitch-angle

 $\theta = \cos^{-1} \frac{V_{II}}{V}$ $|\underline{\nabla}||_{\underline{N}}$

 $\rho(B=3T)$ 9.0 cm 8.3 cm 8.3 cm 3.8 cm ³He(0.82 MeV) T(1.0 MeV) P(3.0 MeV) α(3.5 MeV) Species

5.1. Scintillator probe: real orbit simulation

View along tube axis

SP detects ions with gyro-radius from *3 cm* to *14 cm* pitch-angle from *35⁰ to 85⁰*

5th ITER International Summer School, Aix en Provence, France, 20-24 June 2011

5.2. α -particle collectors: Faraday cups in JET

CCFE Escaped & particle diagnostics
5.2. α -particle collectors: Faraday cups position
Beam
Plasma 6 Curved beam mounted on vessel wall -7 5 "Pylons" will mount on beam – poloidal resolution
Each pylon can contain up to 3 Faraday cup modules – radial resolution
-41° -41°
Faraday cup
Ro=2.96m, Zo=0
61 5th ITER International Summer School, Aix en Provence, France, 20-24 June 2011

5.2. α-particle collectors: Faraday cup array

Faraday Cups array provides good poloidal and time resolution

- Time resolution: 1 kHz
- Multiple poloidal positions (5)
- Multiple radial locations (max 3)
- Moderate energy resolution (max 8 bins)
- BUT, no pitch angle resolution

5.2. α-particle collectors: Faraday cup assembly

Stack of alternating Ni foils and mica insulating sheets, with terminal block and perforated cover to admit ions.

Solution	of multiple thin d by mica foils	es deposition	d for each foil	es <mark>energy</mark> 50%)	/ E _{max} , MeV	1.4	3.1	5.0	6.1	
rgy re	nposed	etermin	neasure	epth giv ∆E~10–	E _{min} , Me⁄	ı	2.0	3.5	5.4	1100 00
p ene	ctor con I foils se	nergy d	urrent n dually	ent vs de oution (Foils	#1	#2	#3	#4	
artic day cu	 Determentaria 	 lon e depth 	 Ion c indivi 	• Curre distri						Erance
caped co-p	Thin	ν foils		Current flow to amplifiers	-					ional Summar School Aix an Dro
										t t

5.2. α-particle collectors: Faraday cup results

- Alpha Particle Diagnostics will play important roles in research on self-heating burning plasma physics and in the burn control of the fusion reactors
- An overview of APD based on JET diagnostic set was presented
- Examples of recent JET results were given
- plasmas and will be crucial for possible next DT-experiments in JET. APD play important role for the fast ion physics studies in DD-*
- Some of diagnostics from the JET APD set could be used in future DT-experiments in ITER and other burning plasma devices
- support of the ITER fast-ion / α -particle diagnostics developments Several unique techniques were tested/to be tested at JET in a

